A Computed Tomographic Image Study on Thickness of the Modified Infrazygomatic Crest Site Between Patients with Class I and Class III Skeletal Pattern

Objectives: To compare thickness of modified infrazygomatic crest (IZC) and determine an optimal area for the miniscrew insertion in modified IZCs in skeletal Class I and Class III patients.

Methods: Cone-beam computed tomography images of IZCs of 15 of skeletal Class I patients and 15 skeletal Class III patients were oriented using Dolphin Imaging software. Four axial slices were done at vertical levels of 5, 6, 7, and 8 mm apical to the buccal cementoenamel junction of the maxillary first molar (U6). Parameters measured were buccal cortical bone thickness, buccal plate thickness of the distobuccal root of the U6 and mesiobuccal root of the maxillary second molar, and thickness of modified IZC with different angles of insertion, 55°, 60°, 65°, and 70° to the U6 occlusal plane. Independent-sample t-tests were performed (p<0.05).

Results: Buccal cortical bone thickness in skeletal Class III patients (1.55±0.30 mm to 1.64±0.40 mm) was significantly greater than skeletal Class I patients (1.34±0.36 mm to 1.39±0.35 mm). Thickness of modified IZC in skeletal Class I and Class III patients showed no statistically significant differences. More than 6 mm of thickness of modified IZC were found at vertical levels of 5 and 6 mm in skeletal Class III patients and 5 mm in skeletal Class I patients.

Conclusions: Optimal areas for IZC miniscrew insertion were found at vertical levels of 5 and 6 mm in skeletal Class III patients and at vertical levels of 5 mm in skeletal Class I patients with 55°-70° insertion angles.

1. Jia X, Chen X, Huang X. Influence of orthodontic mini-implant penetration of the maxillary sinus in the infrazygomatic crest region. Am J Orthod Dentofacial Orthop. 2018;153(5):656-61.

2. Liu H, Wu X, Yang L, Ding Y. Safe zones for miniscrews in maxillary dentition distalization assessed with cone-beam computed tomography. Am J Orthod Dentofacial Orthop. 2017;151(3):500-6.

3. Liou EJ, Chen PH, Wang YC, Lin JC. A computed tomographic image study on the thickness of the infrazygomatic crest of the maxilla and its clinical implications for miniscrew insertion. Am J Orthod Dentofacial Orthop. 2007;131(3):352-6.

4. Lin JJ. Creative orthodontics blending the damon system & TADs to manage difficult malocclusions. Taipei, Taiwan: Yong Chieh Co.; 2010.

5. Lin J, Liou E, Yeh CL. Intrusion of overerupted maxillary molars with miniscrew anchorage. J Clin Orthod. 2006;40:378-83.

6. Liou EJW, Pai BCJ, Lin JCY. Do miniscrews remain stationary under orthodontic forces? Am J Orthod Dentofacial Orthop. 2004;126(1):42-7.

7. Sugawara J, Nagasaka H, Yamada S, Yokota S, Takahashi T, Nanda R. The application of orthodontic miniplates to Sendai surgery first. Semin Orthod. 2018;24(1):17-36.

8. Nagasaka H, Sugawara J, Kawamura H, Nanda R. "Surgery first" skeletal Class III correction using the skeletal anchorage system. J Clin Orthod. 2009;43:97-105.

9. Aristizábal J, Smit R, Villegas C. The "surgery first" approach with passive self-ligating brackets for expedited treatment of skeletal Class III malocclusion. J Clin Orthod. 2015;49:361-9.

10. Park HS, Kim JY, Kwon TG. Occlusal plane change after intrusion of maxillary posterior teeth by microimplants to avoid maxillary surgery with skeletal Class III orthognathic surgery. Am J Orthod Dentofacial Orthop. 2010;138(5):631-40.

11. Tseng YC, Pan CY, Liu PH, Yang YH, Chang HP, Chen CM. Resonance frequency analysis of miniscrew implant stability. J Oral Sci. 2018;60(1):64-9.

12. Farnsworth D, Rossouw PE, Ceen RF, Buschang PH. Cortical bone thickness at common miniscrew implant placement sites. Am J Orthod Dentofacial Orthop. 2011;139(4):495-503.

13. Motoyoshi M, Yoshida T, Ono A, Shimizu N. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implant. Int J Oral Maxillofac Implants. 2006;22:779-84.

14. Trirattanapradit C, Chaiworawitkul M. Buccal bone thickness at infrazygomatic crest site in thai growing unilateral cleft lip and palate patients. CM Dent J. 2019;40(2):29-37.

15. Trirattanapradit C, Thongvigitmanee S, Chaiworawitkul M. Comparison of the buccal cortical bone thickness in growing thai patients with unilateral cleft lip and palate using cone-beam computed tomography. CM Dent J. 2019;40(3):81-9.

16. Lohalertkit C, Poolsin K, Janhom A, Patanaporn V, Jotikasthira D. Comparison of infrazygomatic crest thicknesses between Thai patients with Class I and Class II skeletal pattern using cone beam computed tomography. Thai Assoc Orthod. 2018;8(1):3-12.

17. Lee HS, Choi HM, Choi DS, Jang I, Cha BK. Bone thickness of the infrazygomatic crest area in skeletal Class III growing patients: a computed tomographic study. Imaging Sci Dent. 2013;43(4):261-6.

18. Tavares A, Crusoé-Rebello IM, Neves FS. Tomographic evaluation of infrazygomatic crest for orthodontic anchorage in different vertical and sagittal skeletal patterns. J Clin Exp Dent. 2020;12(11):e1015-e20.

19. Araghbidikashani M, Golshah A, Nikkerdar N, Rezaei M. In vitro impact of insertion angle on primary stability of miniscrews. Am J Orthod Dentofacial Orthop. 2016;150(3):436-43.

20. Holm L, Cunningham SJ, Petrie A, Cousley RR. An in vitro study of factors affecting the primary stability of orthodontic mini-implants. Angle Orthod. 2012;82(6):1022-8.

21. Phusantisampan P, Jotikasthira D, Jariyapongpaiboon P, & Tripuwabhrut K. Effects of pre-drilled pilot-hole diameters on miniscrew implant primary stability: an in vitro study. CM Dent J. 2020;41(3):13-22.

22. Lim SA, Cha JY, Hwang CJ. Insertion torque of orthodontic miniscrews according to changes in shape, diameter and length. Angle Orthod. 2008;78(2):234-40.

23. Damang T, Tripuwabhrut K, Jotikasthira D. Effects of stainless steel miniscrew length on primary stability: an in vitro study. CM Dent J. 2020;41(3):23-30.

24. Motoyoshi M, Inaba M, Ono A, Ueno S, Shimizu N. The effect of cortical bone thickness on the stability of orthodontic mini-implants and on the stress distribution in surrounding bone. Int J Oral Maxillofac Surg. 2009;38(1):13-8.

25. Poggio P, Incorvati C, Velo S, Carano A. "Safe zones": A guide for miniscrew positioning in the maxillary and mandibular arch. Angle Orthod. 2006;76:191-7.

26. Melsen B, Costa A. Immediate loading of implants used for orthodontic anchorage. Clin Orthod Res. 2000;3(1):23-8.

27. Wehrbein H, Glatzmaier J, Yildirim M. Orthodontic anchorage capacity of short titanium screw implants in the maxilla. an experimental study in the dog. Clin Oral Implants Res. 1997;8(2):131-41.

28. Ardekian L, Oved-Peleg E, Mactei EE, Peled M. The clinical significance of sinus membrane perforation during augmentation of the maxillary sinus. J Oral Maxillofac Surg. 2006;64(2):277-82.

29. Laursen MG, Melsen B, Cattaneo PM. An evaluation of insertion sites for mini-implants: a micro - CT study of human autopsy material. Angle Orthod. 2013;83(2):222-9.

30. Baumgaertel S, Hans MG. Assessment of infrazygomatic bone depth for mini-screw insertion. Clin Oral Implants Res. 2009;20(6):638-42.

31. Costa JVD, Ramos AL, Iwaki Filho L. Zygomatic-maxillary cortical bone thickness in hyper, normo and hypodivergent patients. Dental Press J Orthod. 2021;26(1):e211965.

32. Moon CH, Park HK, Nam JS, Im JS, Baek SH. Relationship between vertical skeletal pattern and success rate of orthodontic mini-implants. Am J Orthod Dentofacial Orthop. 2010;138(1):51-7.

Damang T, Mahasantipiya P, Suteerapongpun P, Tripuwabhrut K. A Computed Tomographic Image Study on Thickness of the Modified Infrazygomatic Crest Site Between Patients with Class I and Class III Skeletal Pattern: Original articles. CM Dent J [Internet]. 2022 May 30 [cited 2024 Nov 18];43(2):72-78. Available from: https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=172

Damang, T., Mahasantipiya, P., Suteerapongpun, P. & Tripuwabhrut, K. (2022). A Computed Tomographic Image Study on Thickness of the Modified Infrazygomatic Crest Site Between Patients with Class I and Class III Skeletal Pattern. CM Dent J, 43(2), 72-78. Retrieved from: https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=172

Damang, T., Mahasantipiya Phattaranant,Suteerapongpun Piyadanai and Tripuwabhrut Kanich. 2022. "A Computed Tomographic Image Study on Thickness of the Modified Infrazygomatic Crest Site Between Patients with Class I and Class III Skeletal Pattern." CM Dent J, 43(2), 72-78. https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=172

Damang, T. et al. 2022. 'A Computed Tomographic Image Study on Thickness of the Modified Infrazygomatic Crest Site Between Patients with Class I and Class III Skeletal Pattern', CM Dent J, 43(2), 72-78. Retrieved from https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=172

Damang, T., Mahasantipiya, P., Suteerapongpun, P. and Tripuwabhrut, K. "A Computed Tomographic Image Study on Thickness of the Modified Infrazygomatic Crest Site Between Patients with Class I and Class III Skeletal Pattern", CM Dent J, vol.43, no. 2, pp. 72-78, May. 2022.

Damang, T., Mahasantipiya, P., Suteerapongpun, P., et al. "A Computed Tomographic Image Study on Thickness of the Modified Infrazygomatic Crest Site Between Patients with Class I and Class III Skeletal Pattern." CM Dent J, vol.43, no. 2, May. 2022, pp. 72-78, https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=172