Effects of Crown Material Type on Stress and Strain Distributions in Peri Single Implant Bone: A Pilot Finite Element Study

Purpose : To investigate stress distribution pattern, maximum von Mises stress and volume average values of von Mises stress and strain around peri-implant bone on a single crown implant with different crown materials under various loading locations.

Material and method : Two different occlusal loading locations (central fossa and 2-mm offset horizontally) and five different material properties (ceramic, gold alloy, hybrid ceramic, resin acrylic and polyetheretherketone) of a single crown were taken into account to explore stress and strain transferred from the crown to the surrounding bone through the implant. Bone-implant models were constructed and loaded under an axial compressive force of 200 N. Abaqus program was used to analyze stress distribution pattern, maximum von Mises stress, and strain in the peri-implant bone using finite element method.

Results : Similar stress distribution pattern was presented in all groups, which greater stress and strain were concentrated around cortical bone at the neck of the implant. Different loading locations affected stress distribution pattern. The 2-mm offset loading presented higher stress concentration at the neck of the implant and greater von Mises stress and strain values around peri-implant bone than the central fossa loading. No differences of von Mises stress and strain values around peri-implant bone were found when loaded the crown with different material properties.

Conclusion : Within the limitation of this study, loading location influenced the stress distribution pattern around the peri-implant bone of the single crown implant. Off-axis loading tends to increase stress and strain values compared to the central fossa loading. Crown materials were not affected the stress and strain values around the peri-implant bone.

1. Davies JE. Understanding peri-implant endosseous healing. J Dent Educ 2003; 67(8): 932-949.

2. Frost HM. Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod 1994; 64(3): 175-188.

3. Frost HM. A 2003 update of bone physiology and Wolff's Law for clinicians. Angle Orthod 2004; 74(1): 3-15.

4. Ashby MF, Shercliff H, Cebon D. Materials: engineering, science, processing and design. 4th ed. Butterworth; Elsevier 2013: 52-63.

5. Askeland DR, Webster P. The science and engineering of materials. 1st ed. New York: Springer US; 1996: 197-248.

6. Gracis SE, Nicholls JI, Chalupnik JD, Yuodelis RA. Shock-absorbing behavior of five restorative materials used on implants. Int J Prosthodont 1991; 4(3): 282-291.

7. Misch CE. Contemporary implant dentistry. St. Louis: Mosby. 1999; 109: 645-668.

8. Misch CE. Contemporary Implant Dentistry. Implant Dent. 1999; 8(1): 90.

9. Tiossi R, Lin L, Conrad HJ, et al. A digital image correlation analysis on the influence of crown material in implant-supported prostheses on bone strain distribution. J Prosthodont Res 2012; 56(1): 25-31.

10. Çiftçi Y. The effect of veneering materials on stress distribution in implant-supported fixed prosthetic restorations. Int J Oral Maxillofac Implants 2000; 15(4): 571-582.

11. Hobkirk J, Psarros K. The influence of occlusal surface material on peak masticatory forces using osseointegrated implant-supported prostheses. Int J Oral Maxillofac Implants 1992; 7(3): 345-352.

12. Cibirka RM, Razzoog ME, Lang BR, Stohler CS. Determining the force absorption quotient for restorative materials used in implant occlusal surfaces. J Prosthet Dent 1992; 67(3) :361-364.

13. Rungsiyakull C, Rungsiyakull P, Li Q, Li W, Swain M. Effects of occlusal inclination and loading on mandibular bone remodeling: a finite element study. Int J Oral Maxillofac Implants 2011; 26(3): 527-537.

14. Alves Gomes É, Adelino Ricardo Barão V, Passos Rocha E, Oliveira de Almeida É, Gonçalves Assunção W. Effect of metal-ceramic or all-ceramic superstructure materials on stress distribution in a single implant-supported prosthesis: three-dimensional finite element analysis. Int J Oral Maxillofac Implants 2011; 26(6): 1202-1209.

15. Sugiura T, Horiuchi K, Sugimura M, Tsutsumi S. Evaluation of threshold stress for bone resorption around screws based on in vivo strain measurement of miniplate. J Musculoskelet Neuronal Interact 2000; 1(2): 165-170.

16.Bacchi A, Consani RLX, Mesquita MF, dos Santos MBF. Effect of framework material and vertical misfit on stress distribution in implant-supported partial prosthesis under load application: 3-D finite element analysis. Acta Odontol Scand 2013; 71(5): 1243-1249.

17. Sevimay M, Usumez A, Eskitascıoglu G. The influence of various occlusal materials on stresses transferred to implant‐supported prostheses and supporting bone: A three‐dimensional finite‐element study. J Biomed Mater Res 2005; 73(1): 140-147.

18. Sertgöz A. Finite element analysis study of the effect of superstructure material on stress distribution in an implant-supported fixed prosthesis. Int J Prosthodont 1997; 10(1): 19-27.

19. Stegaroiu R, Kusakari H, Nishiyama S, Miyakawa O. Influence of prosthesis material on stress distribution in bone and implant: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 1998; 13(6): 781-790.

30. Wang TM, Leu LJ, Wang JS, Lin LD. Effects of prosthesis materials and prosthesis splinting on peri-implant bone stress around implants in poor-quality bone: a numeric analysis. Int J Oral Maxillofac Implants 2002; 17(2): 231-237.

31. Juodzbalys G, Kubilius R, Eidukynas V, Raustia AM. Stress distribution in bone: single-unit implant prostheses veneered with porcelain or a new composite material. Implant Dent 2005; 14(2): 166-175.

32. Ahmed S, Ahmed S, Eldosoky MA, El-Wakad MT, Agamy EM. Effect of Stiffness of Single Implant Supported Crowns on the Resultant Stresses. A Finite Element Analysis. EJHM 2016; 31(3088): 1-13.

33.Iranmanesh P, Abedian A, Nasri N, Ghasemi E, Khazaei S. Stress analysis of different prosthesis materials in implant-supported fixed dental prosthesis using 3D finite element method. Dent Hypotheses 2014; 5(3): 109-114.

34. Gere J, Timoshenko S. Mechanics of materials. Boston: PWS-KENT Publishing Company. 1997; 534(92174): 4-23.

35. Hibbeler RC. Statics and mechanics of materials. Malaysia: Pearson. 2014: 329-396.

36. Rungsiyakull P, Rungsiyakull C, Appleyard R, Li Q, Swain M, Klineberg I. Loading of a single implant in simulated bone. Int J Prosthodont 2011; 24(2): 140-143.

37. Meriam JL, Kraige LG. Engineering mechanics statics, in Force systems.7th ed. Hoboken: Wiley; 2008: 26-38.

38. Weinberg LA. Therapeutic biomechanics concepts and clinical procedures to reduce implant loading. Part I. J Oral Implantol 2001; 27(6): 293-301.

39. Kim Y, Oh TJ, Misch CE, Wang HL. Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale. Clin Oral Implants Res 2005; 16(1): 26-35.

40. Skalak R. Biomechanical considerations in osseointegrated prostheses. J Prosthet Dent 1983; 49(6): 843-848.

41. Ruff C, Holt B, Trinkaus E. Who's afraid of the big bad Wolff?:“Wolff's law” and bone functional adaptation. Am J Phys Anthropol 2006; 129(4): 484-498.

42. O'Brien WJ. Dental materials and their selection. Chicago: Quintessence Publ. 1997: 168-230.

43. Shahmiri R, Aarts JM, Bennani V, Atieh MA, Swain MV. Finite Element Analysis of an Implant‐Assisted Removable Partial Denture. J Prosthodont 2013; 22(7): 550-555.

44. Anusavice K, Dehoff P, Fairhurst C. Materials science: comparative evaluation of ceramic-metal bond tests using finite element stress analysis. J Dent Res 1980; 59(3): 608-613.

45. Schwitalla A, Abou-Emara M, Spintig T, Lackmann J, Müller W. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. J Biomech 2015; 48(1): 1-7.

46. Della Bona A, Corazza PH, Zhang Y. Characterization of a polymer-infiltrated ceramic-network material. Dent Mater 2014; 30(5): 564-569.

Sakruengman A, Rungsiyakull C, Sukapattee M, Rungsiyakull P. Effects of Crown Material Type on Stress and Strain Distributions in Peri Single Implant Bone: A Pilot Finite Element Study: Original articles. CM Dent J [Internet]. 2020 Sep 01 [cited 2024 Nov 18];41(3):89-103. Available from: https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=71

Sakruengman, A., Rungsiyakull, C., Sukapattee, M. & Rungsiyakull, P. (2020). Effects of Crown Material Type on Stress and Strain Distributions in Peri Single Implant Bone: A Pilot Finite Element Study. CM Dent J, 41(3), 89-103. Retrieved from: https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=71

Sakruengman, A., Rungsiyakull Chaiy,Sukapattee Marisa and Rungsiyakull Pimduen. 2020. "Effects of Crown Material Type on Stress and Strain Distributions in Peri Single Implant Bone: A Pilot Finite Element Study." CM Dent J, 41(3), 89-103. https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=71

Sakruengman, A. et al. 2020. 'Effects of Crown Material Type on Stress and Strain Distributions in Peri Single Implant Bone: A Pilot Finite Element Study', CM Dent J, 41(3), 89-103. Retrieved from https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=71

Sakruengman, A., Rungsiyakull, C., Sukapattee, M. and Rungsiyakull, P. "Effects of Crown Material Type on Stress and Strain Distributions in Peri Single Implant Bone: A Pilot Finite Element Study", CM Dent J, vol.41, no. 3, pp. 89-103, Sep. 2020.

Sakruengman, A., Rungsiyakull, C., Sukapattee, M., et al. "Effects of Crown Material Type on Stress and Strain Distributions in Peri Single Implant Bone: A Pilot Finite Element Study." CM Dent J, vol.41, no. 3, Sep. 2020, pp. 89-103, https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=71