Osteoconductivity and Mineralization of Different Commercial Bone Substitute Materials and Newly Hybrid Bone Substitute Material Between Xenograft and Alloplastic Material: An In-vitro Comparative Study on the Human Osteoblast Cell Line

Objectives: To investigate the effect of different bone graft substitutes on osteoconduction and mineralization in bone cells derived from the osteoblast cell line hFOB 1.19.

Methods: Osteoblast cells were cultured and placed on different bone graft materials, including Bio-Oss (xenograft), M bone (alloplast), Osteon II (alloplast), HXT1, and HXT2 (hybrid between xenograft and TCP). The concentration of elements in bone grafts was analyzed by X-ray fluorescence (XRF). The vitality test was evaluated by the methyl thiazolyl tetrazolium assay (MTT) after 1, 3, and 7 days. Alkaline phosphatase (ALP) activity was measured at 3, 7, and 14 days. Alizarin red S staining assay was performed at 7, 14, 21, and 28 days. The data were analyzed using ANOVA along with Tukey's honestly significant difference test.

Results: The cell viability rate was significantly higher in Osteon II and HXT2 compared to the other materials (p<0.001). On day 14, Osteon II and the HXT2 group had higher levels of ALP activity than the Bio-Oss group (p<0.05). Alizarin red assay showed that Osteon II had the highest mineralization (p<0.001) at days 14, 21, and 28, followed by HXT2 and Bio-Oss respectively.

Conclusions: Osteon II, an alloplastic bone graft, and HXT2, a newly developed hybrid between xenograft and TCP, exhibited high viability rates and expression levels in mineralized tissue cells of the osteoblast cell line hFOB 1.19 in vitro.

1. Schropp L, Wenzel A, Kostopoulos L, Karring T. Bone healing and soft tissue contour changes following single-tooth extraction: a clinical and radiographic 12-month prospective study. Int J Periodontics Restorative Dent. 2003;23(4): 313-23.

2. Cypher TJ, Grossman JP. Biological principles of bone graft healing. J Foot Ankle Surg. 1996;35(5):413-7.

3. Miron RJ, Sculean A, Shuang Y, Bosshardt DD, Gruber R, Buser D, et al. Osteoinductive potential of a novel biphasic calcium phosphate bone graft in comparison with autographs, xenografts, and DFDBA. Clin Oral Implants Res. 2016;27(6):668-75.

4. Plenk H, Hollmann K, Wilfert KH. Experimental bridging of osseous defects in rats by the implantation of Kiel bone containing fresh autologous marrow. J Bone Joint Surg Br. 1972;54(4):735-43.

5. Berglundh T, Lindhe J. Healing around implants placed in bone defects treated with Bio-Oss®. an experimental study in the dog. Clin Oral implants Res. 1997;8(2):117-24.

6. Bauer TW, Muschler GF. Bone graft materials: an overview of the basic science. Clin Orthop Relat Res. 2000;371:10-27.

7. Zimmermann G, Moghaddam A. Allograft bone matrix versus synthetic bone graft substitutes. Injury. 2011;42: S16-S21.

8. Salamanca E, Choy CS, Aung LM, Tsao TC, Wang PH, Lin WA, et al. 3D-printed PLA scaffold with fibronectin enhances in vitro osteogenesis. Polymers. 2023;15(12):2619.

9. LeGeros R, Lin S, Rohanizadeh R, Mijares D, LeGeros J. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med. 2003;14(3):201-9.

10. Jensen SS, Bornstein MM, Dard M, Bosshardt DD, Buser D. Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A longterm histomorphometric study in minipigs. J Biomed Mater Res B Appl Biomater. 2009;90(1):171-81.

11. Ferracini R, Bistolfi A, Garibaldi R, Furfaro V, Battista A, Perale G. Composite xenohybrid bovine bone-derived scaffold as bone substitute for the treatment of tibial plateau fractures. Appl Sci. 2019;9(13):2675.

12. Gordon JA, Tye CE, Sampaio AV, Underhill TM, Hunter GK, Goldberg HA. Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone. 2007;41(3):462-73.

13. Gregory CA, Gunn WG, Peister A, Prockop DJ. An alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem. 2004;329(1):77-84.

14. Puchtler H, Meloan SN, TERRY MS. On the history and mechanism of alizarin and alizarin red S stains for calcium. J Histochem Cytochem. 1969;17(2):110-24.

15. Sila-Asna M, Bunyaratvej A, Maeda S, Kitaguchi H, Bunyaratavej N. Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell. Kobe J Med Sci. 2007;53 (1-2):25-35.

16. Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, et al. Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res. 2000;60(21):6001-7.

17. Haugen HJ, Lyngstadaas SP, Rossi F, Perale G. Bone grafts: which is the ideal biomaterial?. J Clin Periodontol. 2019;46 (Suppl 21):92-102.

18. Ayobian-Markazi N, Fourootan T, Kharazifar M. Comparison of cell viability and morphology of a human osteoblast-like cell line (SaOS-2) seeded on various bone substitute materials: an in vitro study. Dent Res J (Iafahan). 2012;9(1):86-92.

19. Kübler A, Neugebauer J, Oh J-H, Scheer M, Zöller JE. Growth and proliferation of human osteoblasts on different bone graft substitutes an in vitro study. Implant Dent. 2004;13(2):171-9.

20. Alcaide M, Serrano MC, Pagani R, Sánchez-Salcedo S, Vallet-Regí M, Portolés M-T. Biocompatibility markers for the study of interactions between osteoblasts and composite biomaterials. Biomaterials. 2009;30(1):45-51.

21. Saldana L, Sánchez-Salcedo S, Izquierdo-Barba I, Bensiamar F, Munuera L, Vallet-Regi M, et al. Calcium phosphate-based particles influence osteogenic maturation of human mesenchymal stem cells. Acta Biomaterialia. 2009;5(4):1294-305.

22. Kaufmann EE, Ducheyne P, Shapiro I. Effect of varying physical properties of porous, surface modified bioactive glass 45S5 on osteoblast proliferation and maturation. J Biomed Mater Res. 2000;52(4):783-96.

23. Knabe C, Driessens F, Planell J, Gildenhaar R, Berger G, Reif D, et al. Evaluation of calcium phosphates and experimental calcium phosphate bone cements using osteogenic cultures. J Biomed Mater Res. 2000;52(3):498-508.

24. Golub EE, Boesze-Battaglia K. The role of alkaline phosphatase in mineralization. Curr Opin Orthop. 2007;18(5):444-8.

25. Miron RJ, Caluseru OM, Guillemette V, Zhang Y, Buser D, Chandad F, et al. Effect of bone graft density on in vitro cell behavior with enamel matrix derivative. Clin Oral Investig. 2015;19:1643-51.

26. Klüppel LE, Antonini F, Olate S, Nascimento FF, Albergaria-Barbosa JR, Mazzonetto R. Bone repair is influenced by different particle sizes of anorganic bovine bone matrix: a histologic and radiographic study in vivo. J Craniofac Surg. 2013;24(4):1074-7.

27. Nam JW, Kim MY, Han SJ. Cranial bone regeneration according to different particle sizes and densities of demineralized dentin matrix in the rabbit model. Maxillofac Plast Reconstr Sur. 2016;38:1-9.

28. Irokawa D, Ota M, Yamamoto S, Shibukawa Y, Yamada S. Effect of β tricalcium phosphate particle size on recombinant human platelet-derived growth factor-BB-induced regeneration of periodontal tissue in dog. Dent Mater J. 2010;29(6):721-30.

29. Testori T, Wallace SS, Trisi P, Capelli M, Zuffetti F, Del Fabbro M. Effect of xenograft (ABBM) particle size on vital bone formation following maxillary sinus augmentation: a multicenter, randomized, controlled, clinical histomorphometric trial. Int J Periodontics Restorative Dent. 2013;33(4):467-75.

30. Kheur MG, Kheur S, Lakha T, Jambhekar S, Le B, Jain V. Does graft particle type and size affect ridge dimensional changes after alveolar ridge split procedure?. J Oral Maxillofac Surg. 2018;76(4):761-9.

31. Shokry AM, Gamal A, Sarhan S. The effect of xenogenic bone graft particle size on the quality of newly formed tissue in alveolar ridge preservation (clinical and histomorphometric study). Adv Dent J. 2023;5(2):368-83.

32. Riachi F, Naaman N, Tabarani C, Aboelsaad N, Aboushelib MN, Berberi A, et al. Influence of material properties on rate of resorption of two bone graft materials after sinus lift using radiographic assessment. Int J Dent. 2012;2012(1):737262.

33. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Meter. 2007;23(7):844-54.

34. Buser D, Broggini N, Wieland M, Schenk R, Denzer A,Cochran D, et al. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res. 2004;83(7): 529-33.

35. Rupp F, Liang L, Geis-Gerstorfer J, Scheideler L, Hüttig F. Surface characteristics of dental implants: a review. Dent Mater. 2018;34(1):40-57.

36. Yetmez M. Sintering behavior and mechanical properties of biphasic calcium phosphate ceramics. Adv Mater Sci Eng. 2014;2014(1):871749.

37. Xidaki D, Agrafioti P, Diomatari D, Kaminari A, Tsalavoutas-Psarras E, Alexiou P, et al. Synthesis of hydroxyapatite, β tricalcium phosphate and biphasic calcium phosphate particles to act as local delivery carriers of curcumin: loading, release and in vitro studies. Materials. 2018;11(4):595.

Pongpila P, Somngam C, Wanachantararak P, Khongkhunthian P. Osteoconductivity and Mineralization of Different Commercial Bone Substitute Materials and Newly Hybrid Bone Substitute Material Between Xenograft and Alloplastic Material: An In-vitro Comparative Study on the Human Osteoblast Cell Line: Original articles. Oral Sci Rep [Internet]. 2025 Sep 19 [cited 2025 Oct 23];46(3):149-160. Available from: https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=511

Pongpila, P., Somngam, C., Wanachantararak, P. & Khongkhunthian, P. (2025). Osteoconductivity and Mineralization of Different Commercial Bone Substitute Materials and Newly Hybrid Bone Substitute Material Between Xenograft and Alloplastic Material: An In-vitro Comparative Study on the Human Osteoblast Cell Line. Oral Sci Rep, 46(3), 149-160. Retrieved from: https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=511

Pongpila, P., Chutikarn Somngam,Phenphichar Wanachantararak and Pathawee Khongkhunthian. 2025. "Osteoconductivity and Mineralization of Different Commercial Bone Substitute Materials and Newly Hybrid Bone Substitute Material Between Xenograft and Alloplastic Material: An In-vitro Comparative Study on the Human Osteoblast Cell Line." Oral Sci Rep, 46(3), 149-160. https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=511

Pongpila, P. et al. 2025. 'Osteoconductivity and Mineralization of Different Commercial Bone Substitute Materials and Newly Hybrid Bone Substitute Material Between Xenograft and Alloplastic Material: An In-vitro Comparative Study on the Human Osteoblast Cell Line', Oral Sci Rep, 46(3), 149-160. Retrieved from https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=511

Pongpila, P., Somngam, C., Wanachantararak, P. and Khongkhunthian, P. "Osteoconductivity and Mineralization of Different Commercial Bone Substitute Materials and Newly Hybrid Bone Substitute Material Between Xenograft and Alloplastic Material: An In-vitro Comparative Study on the Human Osteoblast Cell Line", Oral Sci Rep, vol.46, no. 3, pp. 149-160, Sep. 2025.

Pongpila, P., Somngam, C., Wanachantararak, P., et al. "Osteoconductivity and Mineralization of Different Commercial Bone Substitute Materials and Newly Hybrid Bone Substitute Material Between Xenograft and Alloplastic Material: An In-vitro Comparative Study on the Human Osteoblast Cell Line." Oral Sci Rep, vol.46, no. 3, Sep. 2025, pp. 149-160, https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=511