Dental Implant Artifacts in MRI: Compatibility and Considerations

This review investigated dental implant artifacts in magnetic resonance imaging (MRI) and their safety in clinical practice. Dental prostheses, including implants, crowns, and orthodontic appliances, cause artifacts due to their high magnetic susceptibility, particularly in materials like iron, stainless steel, and cobalt-chromium. Titanium implants are considered safe under MRI environments according to the American Society for Testing and Material (ASTM) standards, with no reported thermal injury or dislodgement during examinations. Despite limited artifacts from titanium's paramagnetic nature, minute ferromagnetic components can still affect visualization. Thus, reducing artifacts in oral and maxillofacial MRI scans is crucial.

Two main categories of artifact reduction techniques are identified: improved porous titanium or alternative materials like zirconia and adjusting MR parameters with advanced sequences. Recommendations include increasing the readout bandwidth, reducing slice thickness, using spin-echo sequences instead of gradient-echo, and employing short tau inversion recovery or DIXON techniques for fat suppression. Additional methods like VAT, VAT-SEMAC combination, and MAVRIC show promise, although applicability may be restricted in specific MRI scanners.

Continuous advancements in dental implant materials and MRI sequences are needed to improve imaging quality and reduce artifacts. Collaboration among dental practitioners, radiologists, and MRI technologists is essential for refining techniques and ensuring patient safety. Although overall dental implant artifacts pose challenges, safety in MRI is well-established. Ongoing developments hold significant potential to enhance MRI imaging quality in patients with dental devices

1. Clark D, Levin L. In the dental implant era, why do we still bother saving teeth? J Endod. 2019;45(12):S57-S65.

2. Elani H, Starr J, Da Silva J, Gallucci G. Trends in dental implant use in the US, 1999–2016, and projections to 2026. J Dent Res. 2018;97(13):1424-30.

3. Gray CF, Redpath TW, Smith FW, Staff RT. Advanced imaging: Magnetic resonance imaging in implant dentistry. Clin Oral Implants Res. 2003;14(1):18-27.

4. Shah N, Bansal N, Logani A. Recent advances in imaging technologies in dentistry. World J Radiol. 2014;6(10):794-807.

5. Law CP, Chandra RV, Hoang JK, Phal PM. Imaging the oral cavity: key concepts for the radiologist. Br J Radiol. 2011;84(1006):944-57.

6. Duttenhoefer F, Mertens ME, Vizkelety J, Gremse F, Stadelmann VA, Sauerbier S. Magnetic resonance imaging in zirconia-based dental implantology. Clin Oral Implants Res. 2015;26(10):1195-202.

7. Wanner L, Ludwig U, Hövener JB, Nelson K, Flügge T. Magnetic resonance imaging-a diagnostic tool for postoperative evaluation of dental implants: a case report. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;125(4):e103-e7.

8. Hilgenfeld T, Juerchott A, Jende JME, Rammelsberg P, Heiland S, Bendszus M, et al. Use of dental MRI for radiation-free guided dental implant planning: a prospective, in vivo study of accuracy and reliability. Eur Radiol. 2020;30(12):6392-401.

9. Demirturk Kocasarac H, Ustaoglu G, Bayrak S, Katkar R, Geha H, Deahl ST 2nd, et al. Evaluation of artifacts generated by titanium, zirconium, and titanium-zirconium alloy dental implants on MRI, CT, and CBCT images: A phantom study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;127(6):535-44.

10. Flügge T, Ludwig U, Winter G, Amrein P, Kernen F, Nelson K. Fully guided implant surgery using Magnetic Resonance Imaging – an in vitro study on accuracy in human mandibles. Clin Oral Implants Res. 2020;31(8):737-46.

11. de Carvalho ESFJM, Wenzel A, Hansen B, Lund TE, Spin-Neto R. Magnetic resonance imaging for the planning, execution, and follow-up of implant-based oral rehabilitation: systematic review. Int J Oral Maxillofac Implants. 2021;36(3):432-41.

12. Demirturk Kocasarac H, Geha H, Gaalaas LR, Nixdorf DR. MRI for dental applications. Dent Clin North Am. 2018;62(3):467-80.

13. Currie S, Hoggard N, Craven IJ, Hadjivassiliou M, Wilkinson ID. Understanding MRI: basic MR physics for physicians. Postgrad Med J. 2013;89(1050):209-23.

14. Dillenseger JP, Molière S, Choquet P, Goetz C, Ehlinger M, Bierry G. An illustrative review to understand and manage metal-induced artifacts in musculoskeletal MRI: a primer and updates. Skeletal Radiol. 2016;45(5):677-88.

15. Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996;23(6):815-50.

16. Bryll A, Urbanik A, Chrzan R, Jurczak A, Kwapińska H, Sobiecka B. MRI disturbances caused by dental materials. Neuroradiol J. 2007;20(1):9-17.

17. Costa AL, Appenzeller S, Yasuda C-L, Pereira FR, Zanardi VA, Cendes F. Artifacts in brain magnetic resonance imaging due to metallic dental objects. Med Oral Patol Oral Cir Bucal. 2009; 14(6):E278-82.

18. Kim SC, Lee HJ, Son SG, Seok HK, Lee KS, Shin SY, et al. Aluminum-free low-modulus Ti–C composites that exhibit reduced image artifacts during MRI. Acta Biomater. 2015;12:322-31.

19. Gimsa J and Harborland L. Electric and magnetic fields in cells and tissues. In: Bassani F, Gerald LL, and Wyder P, editors. Encyclopedia of Condensed Matter Physics: Elsevier; 2005:6-14.

20. Erhardt JB, Fuhrer E, Gruschke OG, Leupold J, Wapler MC, Hennig J, et al. Should patients with brain implants undergo MRI? J Neural Eng. 2018;15(4):041002.

21. Klinke T, Daboul A, Maron J, Gredes T, Puls R, Jaghsi A, et al. Artifacts in magnetic resonance imaging and computed tomography caused by dental materials. PLoS One. 2012;7(2):e31766-e.

22. Brånemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl. 1977;16:1-132.

23. McCracken M. Dental implant materials: commercially pure titanium and titanium alloys. J Prosthodont. 1999;8(1):40-3.

24. Osman RB, Swain MV. A Critical Review of Dental Implant Materials with an Emphasis on Titanium versus Zirconia. Materials (Basel). 2015;8(3):932-58.

25. Nicholson J. Titanium alloys for dental implants: a review. Prosthesis. 2020;2(2):100-16.

26. Silva RCS, Agrelli A, Andrade AN, Mendes-Marques CL, Arruda IRS, Santos LRL, et al. Titanium dental implants: an overview of applied nanobiotechnology to improve biocompatibility and prevent infections. Materials (Basel). 2022;15(9):3150.

27. Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal-induced artifacts in MRI. AJR Am J Roentgenol. 2011;197(3):547-55.

28. Koch KM, Hargreaves BA, Pauly KB, Chen W, Gold GE, King KF. Magnetic resonance imaging near metal implants. J Magn Reson Imaging. 2010;32(4):773-87.

29. Kumagai M, Osada S, Hanzawa K. Artifacts from dental implants in magnetic resonance imaging in the head and neck region. Int J Oral Maxillofac Surg. 2009;38(5):566.

30. Hubálková H, La Serna P, Linetskiy I, Dostálová T. Dental alloys and magnetic resonance imaging. Int Dent J. 2006;56(3):135-41.

31. Fache JS, Price C, Hawbolt EB, Li DK. MR imaging artifacts produced by dental materials. AJNR Am J Neuroradiol. 1987;8(5):837-40.

32. Park SC, Lee CS, Kim SM, Choi EJ, Lee DH, Lee JK. Magnetic resonance imaging distortion and targeting errors from strong rare earth metal magnetic dental implant requiring revision. Turk Neurosurg. 2019;29(1):134-40.

33. Starcuková J, Starcuk Z, Jr., Hubálková H, Linetskiy I. Magnetic susceptibility and electrical conductivity of metallic dental materials and their impact on MR imaging artifacts. Dent Mater. 2008;24(6):715-23.

34. Shellock FG, Woods TO, Crues JV, 3rd. MR labeling information for implants and devices: explanation of terminology. Radiology. 2009;253(1):26-30.

35. Steinbacher J, McCoy M, Klausner F, Wallner W, Oellerer A, Machegger L. Do Patients with Implants Experience Strong Sensations That Lead to Early Termination of MRI Examinations? Concepts Magn Reson Part A. 2019;2019:1-6.

36. US Food and Drug Administration, Center for Devices and Radiological Health. Guidance for industry and FDA staff: Establishing Safety and Compatibility of Passive Implants in the

Magnetic Resonance (MR) Environment 2020. [Internet] Maryland: United States of America; 2020 [updated 2020 March 6; cited 2023 December 12]. Available from: https://www.regulations.gov/document/FDA-2020-D-0957-0190.

37. American Society for Testing and Materials International. ASTM F2503-08 Standard Practice for Marking Medical Devices and Other Items for Safety in the Magnetic Resonance Environment 2013. Pennsylvania: ASTM (USA); 2013 Jul. 7 p.

38. Winter L, Seifert F, Zilberti L, Murbach M, Ittermann B. MRI‐related heating of implants and devices: a review. J Magn Reson Imaging. 2021;53(6):1646-65.

39. American Society for Testing and Materials International. Designation: ASTM F2182-19e2, Standard Test Method for Measurement of Radio Frequency Induced Heating Near Passive Implants During Magnetic Resonance Imaging 2020. Pennsylvania: ASTM (USA); 2020 Apr. 11 p.

40. Hasegawa M, Miyata K, Abe Y, Ishii T, Ishigami T, Ohtani K, et al. 3-T MRI safety assessments of magnetic dental attachments and castable magnetic alloys. Dentomaxillofac Radiol. 2015;44(6):20150011.

41. American Society for Testing and Materials International. ASTM F2052-21: Standard Test Method for Measurement of Magnetically Induced Displacement Force on Passive Implants in the Magnetic Resonance Environment 2022. Pennsylvania: ASTM (USA); 2022 Jan. 10 p.

42. Oriso K, Kobayashi T, Sasaki M, Uwano I, Kihara H, Kondo H. Impact of the static and radiofrequency magnetic fields produced by a 7T MR imager on metallic dental materials. Magn Reson Med Sci. 2016;15(1):26-33.

43. Miyata K, Hasegawa M, Abe Y, Tabuchi T, Namiki T, Ishigami T. Radiofrequency heating and magnetically induced displacement of dental magnetic attachments during 3.0 T MRI. Dentomaxillofac Radiol. 2012;41(8):668-74.

44. Valizadeh S, Pouraliakbar H, Arzani V, Nahardani A. Quantification of artifacts in MR images caused by commonly used dental materials. Iran J Radiol. 2017;14(4):e55566.

45. New PF, Rosen BR, Brady TJ, Buonanno FS, Kistler JP, Burt CT, et al. Potential hazards and artifacts of ferromagnetic and nonferromagnetic surgical and dental materials and devices in nuclear magnetic resonance imaging. Radiology. 1983;147(1):139-48.

46. Beau A, Bossard D, Gebeile-Chauty S. Magnetic resonance imaging artefacts and fixed orthodontic attachments. Eur J Orthod. 2015;37(1):105-10.

47. Tymofiyeva O, Vaegler S, Rottner K, Boldt J, Hopfgartner AJ, Proff PC, et al. Influence of dental materials on dental MRI. Dentomaxillofac Radiol. 2013;42(6):20120271.

48. Devge C, Tjellström A, Nellström H. Magnetic resonance imaging in patients with dental implants: a clinical report. Int J Oral Maxillofac Implants. 1997;12(3):354-9.

49. Holton A, Walsh E, Anayiotos A, Pohost G, Venugopalan R. Comparative MRI compatibility of 316l stainless steel alloy and nickel–titanium alloy stents: original article technical. J Cardiovasc Magn Reson. 2002;4(4):423-30.

50. Jabehdar Maralani P, Schieda N, Hecht EM, Litt H, Hindman N, Heyn C, et al. MRI safety and devices: An update and expert consensus. J Magn Reson Imaging. 2020;51(3):657-74.

51. Kim YH, Choi M, Kim JW. Are titanium implants actually safe for magnetic resonance imaging examinations? Arch Plast Surg. 2019;46(1):96-7.

52. Gunzinger JM, Delso G, Boss A, Porto M, Davison H, von Schulthess GK, et al. Metal artifact reduction in patients with dental implants using multispectral three-dimensional data acquisition for hybrid PET/MRI. EJNMMI Phys. 2014;1(1):102.

53. Jungmann PM, Agten CA, Pfirrmann CW, Sutter R. Advances in MRI around metal. J Magn Reson Imaging. 2017;46(4):972-91.

54. Probst M, Richter V, Weitz J, Kirschke JS, Ganter C, Troeltzsch M, et al. Magnetic resonance imaging of the inferior alveolar nerve with special regard to metal artifact reduction. J Craniomaxillofac Surg. 2017;45(4):558-69.

55. Panyarak W, Chikui T, Yamashita Y, Kamitani T, Yoshiura K. Image quality and ADC assessment in turbo spin-echo and echo-planar diffusion-weighted MR imaging of tumors of the head and neck. Acad Radiol. 2019;26(10):e305-e16.

56. Ariyanayagam T, Malcolm PN, Toms AP. Advances in metal artifact reduction techniques for periprosthetic soft tissue imaging. Semin Musculoskelet Radiol. 2015;19(4):328-34.

57. Hilgenfeld T, Prager M, Schwindling FS, Nittka M, Rammelsberg P, Bendszus M, et al. MSVAT-SPACE-STIR and SEMAC-STIR for reduction of metallic artifacts in 3T head and neck MRI. AJNR Am J Neuroradiol. 2018;39(7):1322-9.

58. Zho SY, Kim MO, Lee KW, Kim DH. Artifact reduction from metallic dental materials in T1-weighted spin-echo imaging at 3.0 tesla. J Magn Reson Imaging. 2013;37(2):471-8.

59. Sonesson M, Al-Qabandi F, Månsson S, Abdulraheem S, Bondemark L, Hellén-Halme K. Orthodontic appliances and MR image artefacts: an exploratory in vitro and in vivo study using 1.5-T and 3-T scanners. Imaging Sci Dent. 2021;51(1):63-71.

60. Rendenbach C, Schoellchen M, Bueschel J, Gauer T, Sedlacik J, Kutzner D, et al. Evaluation and reduction of magnetic resonance imaging artefacts induced by distinct plates for osseous fixation: an in vitro study @ 3 T. Dentomaxillofac Radiol. 2018;47(7):20170361.

61. Lu W, Pauly KB, Gold GE, Pauly JM, Hargreaves BA. SEMAC: slice encoding for metal artifact correction in MRI. Magn Reson Med. 2009;62(1):66-76.

62. Reichert M, Ai T, Morelli JN, Nittka M, Attenberger U, Runge VM. Metal artefact reduction in MRI at both 1.5 and 3.0 T using slice encoding for metal artefact correction and view angle tilting. Br J Radiol. 2015;88(1048):20140601.

63. Bohner L, Dirksen D, Hanisch M, Sesma N, Kleinheinz J, Meier N. Artifacts in magnetic resonance imaging of the head and neck: Unwanted effects caused by implant-supported restorations fabricated with different alloys. J Prosthet Dent. 2023. 20:S0022-3913(23)00554-1. doi: 10.1016/j.prosdent.2023.08.018.

64. Hilgenfeld T, Prager M, Schwindling F, Heil A, Kuchenbecker S, Rammelsberg P, et al. Artefacts of implant-supported single crowns - Impact of material composition on artefact volume on dental MRI. Eur J Oral Implantol. 2016;9(3):301-8.

65. Carter L, Addison O, Naji N, Seres P, Wilman A, Shepherd D, et al. Reducing MRI Susceptibility Artefacts in Implants Using Additively Manufactured Porous Ti-6Al-4V Structures. Acta Biomater. 2020;107:338-48.

66. Duttenhoefer F, Mertens M, Vizkelety J, Gremse F, Stadelmann V, Sauerbier S. Magnetic resonance imaging in zirconia-based dental implantology. Clin Oral Implants Res. 2015;26(10):1195-202.

67. Smeets R, Schöllchen M, Gauer T, Aarabi G, Assaf AT, Rendenbach C, et al. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study. Dentomaxillofac Radiol. 2017;46(2):20160267.

68. Bohner L, Meier N, Gremse F, Tortamano P, Kleinheinz J, Hanisch M. Magnetic resonance imaging artifacts produced by dental implants with different geometries. Dentomaxillofac Radiol. 2020; 49(8):20200121.

69. Dillenseger J, Moliere S, Choquet P, Goetz C, Ehlinger M, Bierry G. An illustrative review to understand and manage metal-induced artifacts in musculoskeletal MRI: a primer and updates. Skeletal Radiol. 2016;45(5):677-88.

Sungkaruk P, Rungsiyakull P, Chaijareenont P, Panyarak W. Dental Implant Artifacts in MRI: Compatibility and Considerations: Review articles. CM Dent J [Internet]. 2024 Nov 15 [cited 2024 Nov 18];45(3):13-26. Available from: https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=223

Sungkaruk, P., Rungsiyakull, P., Chaijareenont, P. & Panyarak, W. (2024). Dental Implant Artifacts in MRI: Compatibility and Considerations. CM Dent J, 45(3), 13-26. Retrieved from: https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=223

Sungkaruk, P., Rungsiyakull Pimduen,Chaijareenont Pisaisit and Panyarak Wannakamon. 2024. "Dental Implant Artifacts in MRI: Compatibility and Considerations." CM Dent J, 45(3), 13-26. https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=223

Sungkaruk, P. et al. 2024. 'Dental Implant Artifacts in MRI: Compatibility and Considerations', CM Dent J, 45(3), 13-26. Retrieved from https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=223

Sungkaruk, P., Rungsiyakull, P., Chaijareenont, P. and Panyarak, W. "Dental Implant Artifacts in MRI: Compatibility and Considerations", CM Dent J, vol.45, no. 3, pp. 13-26, Nov. 2024.

Sungkaruk, P., Rungsiyakull, P., Chaijareenont, P., et al. "Dental Implant Artifacts in MRI: Compatibility and Considerations." CM Dent J, vol.45, no. 3, Nov. 2024, pp. 13-26, https://www.dent.cmu.ac.th/cmdj/frontend/web/?r=site/viewarticle&id=223