Residual Monomer from Dental Adhesive: A Review of the Literature
Recently, resin composite and dental adhesive are renowned for apply in restorative treatment because of advantage in esthetics and superior benefits. The key component dental adhesive is resin monomer such as Bis-phenol-A-diglycidyl-methacrylate (Bis-GMA) , and Hydroxyethyl methacrylate (HEMA). Those materials are not fully polymerized due to various factors. Therefore, residual monomers can be eluted from restorative materials. Amount and rate of elution depend on their chemical properties. In clinical situation, patients can receive or contact residual monomers by several routes for example receive via oral cavity or penetrate to dental pulp. Also, resin monomer with low molecular weight and hydrophilic type can easily diffuse through dentine barrier. From in vitro studies, unreacted resin monomers have evident toxicity to dental pulp cells by depletion of glutathione and its substrate. However, substantial amount and prolonged exposure time could potentially induce pulp cell apoptosis through these mechanisms.
1. Ferracane JL. Resin composite--state of the art. Dent Mater 2011; 27(1): 29-38.
2.Cândea Ciurea A, Şurlin P, Stratul Ş I, et al. Evaluation of the biocompatibility of resin composite-based dental materials with gingival mesenchymal stromal cells. Microsc Res Tech 2019; 82(10): 1768-1778.
3. Kinney JH, Marshall SJ, Marshall GW. The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature. Crit Rev Oral Biol Med 2003; 14(1): 13-29.
4. Łagocka R, Mazurek-Mochol M, Jakubowska K, Bendyk-Szeffer M, Chlubek D, Buczkowska-Radlińska J. Analysis of base monomer elution from 3 flowable bulk-fill composite resins using high performance liquid chromatography (HPLC). Med Sci Monit 2018; 24: 4679-4690.
5.Ferracane JL. Elution of leachable components from composites. J Oral Rehabil 1994; 21(4): 441-452.
6. Putzeys E, Duca RC, Coppens L, et al. In-vitro transdentinal diffusion of monomers from adhesives. J Dent 2018; 75: 91-97.
7. Van Landuyt KL, Nawrot T, Geebelen B, et al. How much do resin-based dental materials release? A meta-analytical approach. Dent Mater 2011; 27(8): 723-747.
8. Schneider TR, Hakami-Tafreshi R, Tomasino-Perez A, Tayebi L, Lobner D. Effects of dental composite resin monomers on dental pulp cells. Dent Mater J 2019; 38(4): 579-583.
9. Kerezoudi C, Samanidou VF, Gogos C, Tziafas D, Palaghias G. Evaluation of monomer leaching from a resin cement through dentin. Eur J Prosthodont Restor Dent 2019; 27(1): 10-17.
10. Sofan E, Sofan A, Palaia G, Tenore G, Romeo U, Migliau G. Classification review of dental adhesive systems: from the IV generation to the universal type. Ann Stomatol (Roma) 2017; 8(1): 1-17.
11. Van Landuyt KL, Snauwaert J, De Munck J, et al. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 2007; 28(26): 3757-3785.
12. Walter R, Swift EJ, Jr., Boushell LW, Braswell K. Enamel and dentin bond strengths of a new self-etch adhesive system. J Esthet Restor Dent 2011; 23(6): 390-396.
13. Chang JC, Hurst TL, Hart DA, Estey AW. 4-META use in dentistry: A literature review. J Prosthet Dent 2002; 87(2): 216-224.
14. Mavroudakis E, Cuccato D, Moscatelli D. Determination of reaction rate coefficients in free-radical polymerization using density functional theory. In: Soroush M, ed: Computational Quantum Chemistry, Elsevier Inc; 2019: 47-98.
15. Bouillaguet S, Wataha JC, Hanks CT, Ciucchi B, Holz J. In vitro cytotoxicity and dentin permeability of HEMA. J Endod 1996; 22(5): 244-248.
16. Van Landuyt KL, De Munck J, Snauwaert J, et al. Monomer-solvent phase separation in one-step self-etch adhesives. J Dent Res 2005; 84(2): 183-188.
17. Pashley EL, Zhang Y, Lockwood PE, Rueggeberg FA, Pashley DH. Effects of HEMA on water evaporation from water-HEMA mixtures. Dent Mater 1998; 14(1): 6-10.
18. Tay FR, Pashley DH. Have dentin adhesives become too hydrophilic? J Can Dent Assoc 2003; 69(11): 726-731.
19. Silikas N, Watts DC. Rheology of urethane dimethacrylate and diluent formulations. Dent Mater 1999; 15(4): 257-261.
20. Bakopoulou A, Papadopoulos T, Garefis P. Molecular toxicology of substances released from resin-based dental restorative materials. Int J Mol Sci 2009; 10(9): 3861-3899.
21. Geurtsen W, Spahl W, Müller K, Leyhausen G. Aqueous extracts from dentin adhesives contain cytotoxic chemicals. J Biomed Mater Res 1999; 48(6): 772-777.
22. El-Damanhoury HM, Gaintantzopoulou M. Effect of thermocycling, degree of conversion, and cavity configuration on the bonding effectiveness of all-in-one adhesives. Oper Dent 2015; 40(5): 480-491.
23. Faria-e-Silva AL, Lima AF, Moraes RR, Piva E, Martins LR. Degree of conversion of etch-and-rinse and self-etch adhesives light-cured using QTH or LED. Oper Dent 2010; 35(6): 649-654.
24. Kanehira M, Finger WJ, Hoffmann M, Endo T, Komatsu M. Relationship between degree of polymerization and enamel bonding strength with self-etching adhesives. J Adhes Dent 2006; 8(4): 211-216.
25. Pongprueksa P, Miletic V, Janssens H, et al. Degree of conversion and monomer elution of CQ/amine and TPO adhesives. Dent Mater 2014; 30(6): 695-701.
26. Van Landuyt KL, Cardoso MV, De Munck J, et al. Optimization of the concentration of photo-initiator in a one-step self-etch adhesive. Dent Mater 2009; 25(8): 982-988.
27. Wegehaupt FJ, Lunghi N, Belibasakis GN, Attin T. Influence of light-curing distance on degree of conversion and cytotoxicity of etch-and-rinse and self-etch adhesives. BMC Oral Health 2016; 17(1): 12.
28. Lima AF, de Andrade KM, da Cruz Alves LE, et al. Influence of light source and extended time of curing on microhardness and degree of conversion of different regions of a nanofilled composite resin. Eur J Dent 2012; 6(2): 153-157.
29. Silikas N, Eliades G, Watts DC. Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dent Mater 2000; 16(4): 292-296.
30. Ozturk B, Cobanoglu N, Cetin AR, Gunduz B. Conversion degrees of resin composites using different light sources. Eur J Dent 2013; 7(1): 102-109.
31. Katahira N, Foxton RM, Inai N, Otsuki M, Tagami J. Comparison of PAC and QTH light sources on polymerization of resin composites. Am J Dent 2004; 17(2): 113-117.
32. Gajewski VE, Pfeifer CS, Fróes-Salgado NR, Boaro LC, Braga RR. Monomers used in resin composites: degree of conversion, mechanical properties and water sorption/solubility. Braz Dent J 2012; 23(5): 508-514.
33. Miletic V, Santini A, Trkulja I. Quantification of monomer elution and carbon-carbon double bonds in dental adhesive systems using HPLC and micro-Raman spectroscopy. J Dent 2009; 37(3): 177-184.
34. Mahdhaoui K, Fournier B, Derbanne MA. Unbound monomers do diffuse through the dentin barrier. Dent Mater 2017; 33(6): 743-751.
35. Okamoto Y, Shintani H, Inoue T, Okuda K. Effects of water-extractable components from bis-GMA-based methacrylate resin on collagen from bovine tendon. Arch Oral Biol 1986; 31(10): 639-641.
36. Tanaka K, Taira M, Shintani H, Wakasa K, Yamaki M. Residual monomers (TEGDMA and Bis-GMA) of a set visible-light-cured dental composite resin when immersed in water. J Oral Rehabil 1991; 18(4): 353-362.
37. Moldovan M, Balazsi R, Soanca A, et al. Evaluation of the degree of conversion, residual monomers and mechanical properties of some light-cured dental resin composites. Materials (Basel) 2019; 12(13): 2109
38. Korfmacher WA. Principles and applications of LC-MS in new drug discovery. Drug Discov Today 2005; 10(20): 1357-1367.
39. Dorman FL, Whiting JJ, Cochran JW, Gardea-Torresdey J. Gas chromatography. Anal Chem 2010; 82(12): 4775-4785.
40. Putzeys E, Cokic SM, Chong H, et al. Simultaneous analysis of bisphenol A based compounds and other monomers leaching from resin-based dental materials by UHPLC-MS/MS. J Sep Sci 2017; 40(5): 1063-1075.
41. Polydorou O, König A, Hellwig E, Kümmerer K. Long-term release of monomers from modern dental-composite materials. Eur J Oral Sci 2009; 117(1): 68-75.
42. Carrilho MR, Tay FR, Donnelly AM, et al. Membrane permeability properties of dental adhesive films. J Biomed Mater Res B Appl Biomater 2009; 88(2): 312-320.
43. Cadenaro M, Maravic T, Comba A, et al. The role of polymerization in adhesive dentistry. Dent Mater 2019; 35(1): e1-e22.
44. Marshall GW, Jr., Chang YJ, Gansky SA, Marshall SJ. Demineralization of caries-affected transparent dentin by citric acid: an atomic force microscopy study. Dent Mater 2001; 17(1): 45-52.
45. Mjör IA. Dentin permeability: the basis for understanding pulp reactions and adhesive technology. Braz Dent J 2009; 20(1): 3-16.
46. Shimizu C, Yamashita Y, Ichijo T, Fusayama T. Carious change of dentin observed on longspan ultrathin sections. J Dent Res 1981; 60(11): 1826-1831.
47. Pashley EL, Talman R, Horner JA, Pashley DH. Permeability of normal versus carious dentin. Endod Dent Traumatol 1991; 7(5): 207-211.
48. Malekipour MR, Razavi SM, Khazaei S, Kazemi S, Behnamanesh M, Shirani F. Histologic evaluation of human pulp response to total etch and self etch adhesive systems. Iran Red Crescent Med J 2013; 15(5): 428-431.
49. Massaro H, Zambelli LFA, Britto AA, et al. Solvent and HEMA increase sdhesive toxicity and cytokine release from dental pulp cells. Materials (Basel) 2019; 12(17): 2750
50. Gupta SK, Saxena P, Pant VA, Pant AB. Release and toxicity of dental resin composite. Toxicol Int 2012; 19(3): 225-234.
51. Demirci M, Hiller KA, Bosl C, Galler K, Schmalz G, Schweikl H. The induction of oxidative stress, cytotoxicity, and genotoxicity by dental adhesives. Dent Mater 2008; 24(3): 362-371.
52. Reichl FX, Simon S, Esters M, et al. Cytotoxicity of dental composite (co)monomers and the amalgam component Hg(2+) in human gingival fibroblasts. Arch Toxicol 2006; 80(8): 465-472.
53. Schweikl H, Spagnuolo G, Schmalz G. Genetic and cellular toxicology of dental resin monomers. J Dent Res 2006; 85(10): 870-877.
54. Kraus D, Wolfgarten M, Enkling N, et al. In-vitro cytocompatibility of dental resin monomers on osteoblast-like cells. J Dent 2017; 65: 76-82.
55. Schweikl H, Hartmann A, Hiller KA, et al. Inhibition of TEGDMA and HEMA-induced genotoxicity and cell cycle arrest by N-acetylcysteine. Dent Mater 2007; 23(6): 688-695.
56. Lee DH, Lim BS, Lee YK, Ahn SJ, Yang HC. Involvement of oxidative stress in mutagenicity and apoptosis caused by dental resin monomers in cell cultures. Dent Mater 2006; 22(12): 1086-1092.
57. Gallorini M, Cataldi A, di Giacomo V. HEMA-induced cytotoxicity: oxidative stress, genotoxicity and apoptosis. Int Endod J 2014; 47(9): 813-818.
58. Zhang Y, Jia H, Jin Y, et al. Glycine attenuates LPS-induced apoptosis and inflammatory cell infiltration in mouse liver. J Nutr 2020; 150(5): 1116-1125.
59. Pauly K, Fritz K, Furey A, Lobner D. Insulin-like growth factor 1 and transforming growth factor-β stimulate cystine/glutamate exchange activity in dental pulp cells. J Endod 2011; 37(7): 943-947.
60. McBean GJ. The transsulfuration pathway: a source of cysteine for glutathione in astrocytes. Amino Acids 2012; 42(1): 199-205.
61. Tak O, Usumez A. Diffusion of HEMA from resin cements through different dentin thicknesses in vitro. Am J Dent 2015; 28(5): 285-291.
62. Cetingüç A, Olmez S, Vural N. HEMA diffusion from dentin bonding agents in young and old primary molars in vitro. Dent Mater 2007; 23(3): 302-307.
63. Yang Y, Reichl FX, Shi J, He X, Hickel R, Högg C. Cytotoxicity and DNA double-strand breaks in human gingival fibroblasts exposed to eluates of dental composites. Dent Mater 2018; 34(2): 201-208.